06 marzo 2019
I fisici hanno ideato un modello olografico dello “spazio di de Sitter”, il termine che definisce un
universo come il nostro, da cui potremmo ottenere nuovi indizi sull’origine dello spazio e del tempo
di Natalie Wolchover / QuantaMagazine
Il tessuto dello spazio e del tempo è visto da quasi tutti i fisici come un tessuto emergente,
cucito con fili quantistici secondo un modello sconosciuto. E per 22 anni hanno avuto a disposizione
un modello giocattolo del modo in cui può funzionare lo spazio-tempo emergente: un “universo in
bottiglia” teorico, come l’ha descritto il suo scopritore, Juan Maldacena.
Lo spazio-tempo che riempie la regione all’interno della bottiglia – un continuum che si piega e
ondeggia, producendo la forza chiamata gravità – è l’esatta mappatura di una rete di particelle
quantistiche che vivono sulla superficie rigida e priva di gravità della bottiglia. Luniverso”
interno è analogo alla proiezione di un ologramma che ha origine dal sistema in cui è confinato, che
ha una dimensionalità inferiore. La scoperta di questo ologramma da parte di Maldacena ha dato ai
fisici un esempio funzionante di una teoria quantistica della gravità.
Ma questo non significa necessariamente che l’universo giocattolo mostri in che modo lo spazio-tempo
e la gravità emergono nel nostro universo. L’interno della bottiglia è un luogo dinamico, un luogo
“alla Escher” chiamato spazio anti-de Sitter (AdS), che è curvato negativamente come una sella.
Sulla sella le diverse direzioni si incurvano in modi opposti: una si incurva verso l’alto e l’altra
verso il basso. Quando ci si allontana dal centro le curve tendono verso la verticale, dando infine
allo spazio AdS il suo confine esterno, una superficie dove le particelle quantistiche possono
interagire per creare l’universo olografico al suo interno. Tuttavia, in realtà, viviamo in uno
“spazio di de Sitter (dS)”, che somiglia alla superficie di una sfera che si espande senza limiti.
Dal 1997, quando Maldacena ha scoperto la corrispondenza AdS/CFT – una dualità tra lo spazio AdS e
una “teoria dei campi conformi” che descrive le interazioni quantistiche sul confine di quello
spazio – i fisici hanno cercato una descrizione analoga delle regioni spaziotemporali come la nostra
che non sono in una bottiglia. L’unico “confine” del nostro universo è linfinito futuro. Ma la
difficoltà concettuale di proiettare un ologramma dalle particelle quantistiche che vivono
nell’infinito futuro ha ostacolato a lungo gli sforzi per descrivere olograficamente lo spazio-tempo
reale.
Nell’ultimo anno, però, tre fisici hanno fatto progressi verso un ologramma dello spazio di de
Sitter. Come la corrispondenza AdS/CFT, anche il loro è un modello giocattolo, ma alcuni dei
principi della sua costruzione possono estendersi a ologrammi spaziotemporali più realistici. Ci
sono “interessanti prove”, ha detto Xi Dong dell’Università della California a Santa Barbara, che ha
condotto la ricerca, che il nuovo modello sia un pezzo di “una struttura unificata per la gravità
quantistica in uno [spazio di] de Sitter”.
Dong e i coautori Eva Silverstein della Stanford University e Gonzalo Torroba del Bariloche Atomic
Center, in Argentina, hanno costruito un ologramma dello spazio dS prendendo due universi AdS,
tagliandoli, deformandoli e incollando i loro confini.
Il taglio è necessario per affrontare un infinito problematico: il fatto che il confine dello spazio
AdS è infinitamente lontano dal suo centro. (Immaginate un raggio di luce che percorra una distanza
infinita lungo la curva della sella per raggiungere il bordo). Dong e coautori hanno reso lo spazio
AdS finito tagliando a un ampio raggio la regione spaziotemporale. Questo ha creato la cosiddetta
“gola di Randall-Sundrum”, dal nome dei fisici Lisa Randall e Raman Sundrum che hanno ideato il
trucco. Questo spazio è ancora approssimato da una CFT che vive sul suo confine, ma il confine si
trova ora a una distanza finita.
Successivamente, Dong e coautori hanno aggiunto ingredienti presi dalla teoria delle stringhe a due
di queste gole di Randall-Sundrum teoriche per dar loro energia e una curvatura positiva. La
procedura, chiamata “uplifting”, ha trasformato i due spazi AdS a forma di sella in spazi dS a forma
di ciotola. A questo punto i fisici potevano fare una cosa ovvia: “incollare” insieme le due ciotole
lungo i loro bordi. Le CFT che descrivono entrambi gli emisferi si accoppiano tra loro, formando un
unico sistema quantico che è olograficamente duale rispetto all’intero spazio sferico de Sitter.
“Lo spazio-tempo che ne risulta non ha confini, ma per costruzione è duale rispetto a due CFT”, ha
detto Dong. Poiché l’equatore dello spazio de Sitter, dove vivono le due CFT, è esso stesso uno
spazio de Sitter, la costruzione è chiamata “corrispondenza dS/dS”.
Silverstein, con tre coautori, aveva proposto questa idea di base già nel 2004, ma nuovi strumenti
teorici hanno permesso a Dong e Torroba di studiare più in dettaglio l’ologramma dS/dS e dimostrare
che supera importanti controlli di coerenza. In un articolo pubblicato la scorsa estate, hanno
calcolato che l’entropia dell’entanglement – una misura di quante informazioni sono immagazzinate
nelle CFT accoppiate che vivono sull’equatore – corrisponde alla formula di entropia nota per la
corrispondente regione sferica dello spazio di de Sitter.
Essi e altri ricercatori stanno esplorando ulteriormente l’ologramma de Sitter con strumenti
informatici. Come ho scritto in un recente articolo, negli ultimi anni i fisici hanno scoperto che
la corrispondenza AdS/CFT funziona esattamente come un “codice di correzione degli errori
quantistici” – uno schema per la codifica sicura delle informazioni in un sistema quantistico
fluttuante, sia esso un computer quantistico o una CFT. La correzione dell’errore quantistico può
essere il modo in cui il tessuto emergente dello spazio-tempo raggiunge la sua robustezza,
nonostante sia intessuto di fragili particelle quantistiche.
Dong, che faceva parte del team che ha scoperto la connessione tra AdS/CFT e la correzione degli
errori quantistici, ha detto: “Credo che l’olografia di de Sitter funzioni anche come codice di
correzione degli errori quantistici, e mi piacerebbe molto capire come”. C’è poca speranza di avere
prove sperimentali che dimostrino la correttezza di questa nuova prospettiva sullo spaziotempo, ma
secondo Dong, ” se i pezzi cominciano a combaciare, istintivamente sai di essere sulla strada
giusta”.
Patrick Hayden, fisico teorico e informatico di Stanford che studia la corrispondenza AdS/CFT e la
sua relazione con la correzione degli errori quantistici, ha detto che lui e altri esperti stanno
rimuginando sul modello dS/dS di Dong, Silverstein e Torroba. Ha detto che è troppo presto per dire
se le intuizioni sul modo in cui è tessuto lo spazio-tempo e come funziona la gravità quantistica
nello spazio AdS porterà a un modello di de Sitter. “Ma c’è un percorso, qualcosa da fare”, ha detto
Hayden. “È possibile formulare domande matematiche concrete. Penso che molto accadrà nei prossimi
anni”.
——-
(L’originale di questo articolo è stato pubblicato il 21 febbraio 2019 da QuantaMagazine.org, una
pubblicazione editoriale indipendente online promossa dalla Fondazione Simons per migliorare la
comprensione pubblica della scienza. Traduzione ed editing a cura di Le Scienze. Riproduzione
autorizzata, tutti i diritti riservati)
www.quantamagazine.org/how-our-universe-could-emerge-as-a-hologram-20190221/
Lascia un commento