Scienza e Fisica Quantistica
Questarticolo ci avvicina, di nuovo, ad una versione alternativa di guardare a ciò che ci circonda.
Qui si cerca di mostrare che la teoria di Lorentz, sotto certi aspetti, può essere considerata più
soddisfacente rispetto alla relatività speciale di Einstein.
Davide Fiscaletti – 02/08/2022
Premessa
Storicamente, nello studio dei fenomeni fisici che avvengono alle elevatissime velocità, la
relatività speciale di Einstein è risultata vincente. Esiste tuttavia uninterpretazione
alternativa, la teoria di Lorentz, la quale è in grado di riprodurre ugualmente i risultati
sperimentali. Qui si cerca di mostrare che la teoria di Lorentz, sotto certi aspetti, può essere
considerata più soddisfacente rispetto alla relatività speciale di Einstein.
La fisica relativistica (o fisica delle alte velocità) ha come oggetto lo studio dei fenomeni che
avvengono alle elevatissime velocità, cioè velocità prossime alla velocità c (300000 Km/sec) di
propagazione della luce nel vuoto. Linterpretazione standard della fisica relativistica, che ha
avuto maggior successo sul piano storico, è la relatività speciale, sviluppata da Einstein nel 1905.
Questa teoria, che ha rivoluzionato le nostre nozioni basilari dello spazio e del tempo, si basa su
due ipotesi elevate al rango di postulati, di verità fondamentali della natura: il principio di
relatività (secondo cui tutte le leggi della fisica assumono la stessa forma in tutti i sistemi di
riferimento inerziali) e il postulato sulla costanza della velocità della luce nel vuoto (secondo
cui la velocità della luce nel vuoto ha lo stesso valore c rispetto a tutti i sistemi di riferimento
inerziali).
Tuttavia, la relatività speciale di Einstein non è lunica interpretazione possibile del formalismo
usato nella fisica delle alte velocità; esiste anche uninterpretazione alternativa, dovuta al
fisico olandese Hendrik Antoon Lorentz, la quale è in grado di riprodurre ugualmente i risultati
sperimentali. Anzi, se si vuole essere precisi, bisogna dire che la struttura matematica della
teoria einsteniana della relatività speciale fu prima ricavata da Lorentz; quello che fece Einstein
fu, in un secondo momento, di riottenerla in unaltra maniera, sulla base dei due principi di
carattere fondamentale citati sopra, vale a dire il principio di relatività e il postulato della
costanza della velocità della luce nel vuoto.
La teoria di Lorentz
Il punto di partenza della fisica relativistica è rappresentato dallesito negativo del famoso
esperimento di Michelson e Morley (cioè il fatto che la velocità della luce non subisce alcuna
influenza da parte del moto terrestre, in altre parole che la terra appare immobile rispetto a un
mezzo etereo esterno, permeante lo spazio e che dovrebbe spiegare la propagazione delle onde
elettromagnetiche, delle interazioni gravitazionali, ecc
).
Ebbene, questo risultato sperimentale, prima che da Einstein, fu messo in termini matematici negli
ultimi anni dell ‘800 da Lorentz, che venne allora a proporre quella che è tuttora detta
contrazione di Lorentz: la quale è una forma matematica di ciò che deve essere visto come un puro
fatto empirico. Secondo questa formulazione matematica, quando un oggetto si muove rispetto a un
osservatore, questi percepisce loggetto stesso accorciato rispetto a quella che sarebbe la sua
lunghezza a riposo (con riferimento allosservatore), secondo il fattore che è quindi tanto più
importante quanto più alta è la velocità v delloggetto. In altre parole, ogni corpo in moto
rispetto a un etere esterno (pensato sempre a riposo) subisce una contrazione lungo la direzione del
moto secondo quel fattore della radice quadrata. Questo effetto, o le sue conseguenze, non diventano
osservabili se non a velocità altissime.
Lorentz era dellidea che, almeno in prima approssimazione, si doveva avere una sostanziale
invarianza dei fenomeni elettromagnetici, e quindi delle equazioni di Maxwell che descrivono tali
fenomeni, nel passaggio dal riferimento assoluto delletere al sistema terrestre (supposto inerziale
in via approssimativa), per lo meno nei limiti in cui non si erano mostrate differenze o effetti per
il moto della Terra rispetto alletere. Per avere una completa equivalenza tra il sistema in
movimento e letere a riposo riguardo ai fenomeni elettromagnetici e quindi garantire linvarianza
delle equazioni di Maxwell per cambiamento di sistema di riferimento, Lorentz mostrò che non solo la
coordinata spaziale nella direzione del moto subisce una variazione (in virtù della contrazione
delle lunghezze) ma anche il tempo deve essere misurato in modo diverso a seconda che il sistema sia
in moto o a riposo: il tempo misurato in un sistema inerziale in moto rispetto alletere definito
“tempo locale” – è legato al tempo misurato nel sistema delletere per mezzo di una particolare
formula. In questo modo, Lorentz ricavò quelle leggi di trasformazione delle coordinate dello spazio
e del tempo tra letere a riposo e il sistema in moto, che sono tuttora note come trasformazioni di
Lorentz (Einstein avrebbe poi derivato queste stesse trasformazioni nel contesto della sua teoria
della relatività speciale).
Lorentz vide in queste trasformazioni la chiave per comprendere linvarianza dellelettromagnetismo,
nelle sue leggi e nei suoi fenomeni, nel passaggio dal sistema delletere in quiete assoluta a
sistemi in moto rispetto ad esso. In sostanza, la visione di Lorentz è legata ad un etere esterno
sempre pensato in quiete assoluta e di conseguenza privilegia un sistema di riferimento, quello in
cui vengono formulate le leggi dellelettromagnetismo. Nella teoria di Lorentz lo spazio in cui ha
luogo il movimento è fisicamente attivo: è un movimento assoluto rispetto alletere che produce una
contrazione, assoluta, delle lunghezze.
Nellambito di questa teoria, la velocità della luce ha lo stesso valore c in tutte le direzioni
solo nel sistema delletere a riposo; nei sistemi in moto essa si somma alla velocità del sistema di
riferimento e cè di fatto una compensazione tra i due effetti (vale a dire la contrazione e
leffettiva variabilità di c) in modo da garantire che tali sistemi in moto siano equivalenti al
sistema delletere riguardo ai fenomeni elettromagnetici.
Va segnalato infine che, nellambito delle sue ricerche teoriche, Lorentz dedusse in pratica tutto
il formalismo matematico delle fisica relativistica; per esempio, dai suoi studi emergeva già
chiaramente che la massa di un elettrone doveva crescere allaumentare della velocità v della
particella, e che sarebbe diventata infinita qualora v avesse uguagliato la velocità della luce
(coerentemente con quanto avrebbe poi riottenuto Einstein nel contesto della relatività speciale).
Ci proponiamo adesso di mostrare che, sotto diversi importanti aspetti, la versione di Lorentz della
fisica delle alte velocità può essere considerata più soddisfacente rispetto alla relatività
speciale einsteniana.
La questione delletere
Un primo punto importante su cui la teoria di Lorentz può essere considerata più soddisfacente
rispetto alla relatività speciale di Einstein riguarda la questione delletere in connessione con la
meccanica quantistica. Nellambito della teoria di Lorentz, tutte le parti delletere dovevano
pensarsi immobili, luna rispetto allaltra, e letere a riposo costituiva un sistema di riferimento
distinguibile dagli altri.
Letere di Lorentz restava sempre in quiete assoluta e quindi privilegiava nettamente un sistema di
riferimento, quello specificato dalla teoria di Lorentz dellelettromagnetismo. Con la pubblicazione
della sua teoria della relatività speciale, Einstein mostrò di non essere daccordo con la
concezione di Lorentz dellelettromagnetismo. La visione di Lorentz in cui da un lato tutti i
sistemi inerziali erano perfettamente equivalenti per formulare le leggi della meccanica newtoniana
e, dallaltro lato, uno di questi sistemi, quello in cui letere era a riposo, risultava
privilegiato nella formulazione delle leggi dellelettromagnetismo, era incompatibile con la
relatività speciale.
Nella relatività speciale di Einstein non ha senso considerare letere in quiete assoluta in quanto
questo tipo di etere, privilegiando nettamente un sistema di riferimento, è incompatibile con il
principio di relatività. Einstein introdusse così un nuovo tipo di etere, che può essere definito
“etere relativistico” o “etere inerziale”. Nellambito della sua teoria, la nozione di movimento,
ivi incluso il caso particolare dello stato di quiete, poteva essere applicata solo ai sistemi di
riferimento inerziali, perché questi erano i soli ad essere in grado di muoversi uno rispetto agli
altri, cambiando la loro posizione relativa; invece, per Einstein, nessun stato di movimento e, in
particolare, nessun stato di quiete, poteva essere attribuito alletere, i concetti di moto e di
quiete in questo caso erano totalmente inapplicabili.
Pertanto, letere di Einstein era privo di qualsiasi tipo di movimento, quindi anche della
possibilità di essere immobile. Aveva, insomma, proprietà mai viste, che impedivano anche di
immaginarlo composto di corpuscoli o di parti, perché queste si sarebbero inevitabilmente trovate in
un qualche stato di movimento. Questa nuova (strana) descrizione era inevitabile se letere doveva
apparire esattamente lo stesso in tutti i sistemi di riferimento inerziali. Occorre tuttavia
sottolineare che la concezione einsteiniana di etere non è in grado di risolvere un importante
problema della microfisica, vale a dire la propagazione delle onde quantistiche. Nella formulazione
di Einstein e del fisico francese de Broglie, ciascun oggetto materiale, nellambito della fisica
microscopica, deve essere pensato come costituito da unonda e da un corpuscolo contemporaneamente,
con londa che ha il ruolo di guidare il corpuscolo durante il suo movimento (questa idea, nota come
dualismo oggettivo onda-corpuscolo, costituisce il punto di partenza verso il recupero di una
descrizione causale dei fenomeni quantistici).
Nella visione di Einstein, queste onde quantistiche dovevano essere prive di energia e, purtuttavia,
oggettivamente reali. Le onde degli oggetti microscopici avrebbero allora dovuto essere delle
oscillazioni dello spazio fisico (etere), ma la teoria della relatività speciale dichiarava
completamente equivalenti tutti i sistemi di riferimento inerziali ed escludeva lesistenza di un
sistema di riferimento privilegiato nel quale un mezzo etereo potesse essere mediamente immobile.
Letere relativistico introdotto da Einstein, essendo privo di ogni tipo di movimento, non può
pertanto permettere di spiegare la propagazione delle onde quantistiche: un mezzo per il quale non
si possa nemmeno concepire uno stato di movimento non può certo fare da supporto alla propagazione
di onde!
Letere di Lorentz, invece, essendo in quiete assoluta, può fungere da mezzo per la propagazione di
onde e, quindi, per quanto riguarda il problema del dualismo oggettivo onda-corpuscolo, presenta
notevoli vantaggi sulla relatività speciale. Se si tiene conto che il dualismo oggettivo
onda-corpuscolo consente di spiegare in modo consistente tutti i risultati sperimentali riguardanti
il mondo microscopico, ne deriva allora che, per quanto concerne il problema delletere in
connessione con la meccanica quantistica, la teoria di Lorentz è in grado di dipingere unimmagine
più soddisfacente delluniverso rispetto alla relatività speciale di Einstein.
Sviluppi recenti
Alcuni significativi sviluppi recenti forniscono altri importanti elementi per cui la teoria di
Lorentz può essere considerata più convincente della relatività speciale einsteniana. Innanzi tutto,
Selleri ha messo in rilievo che lesistenza della radiazione cosmica di fondo (o, in altri suoi
articoli, lesistenza della luce che ci giunge da tutte le direzioni dalle diverse stelle) può
definire un sistema di riferimento che nessuno può ignorare.
Secondo Selleri, nel mondo reale il sistema di riferimento in cui la radiazione considerata è
isotropa è il più fondamentale e quindi deve essere privilegiato rispetto agli altri. Inoltre,
Selleri ha mostrato che le trasformazioni di Lorentz usate da Einstein e Lorentz sono solo un caso
particolare di un insieme di trasformazioni più generali che richiedono lesistenza di un sistema di
riferimento privilegiato in situazione stazionaria.
Considerando due sistemi di riferimento inerziali e S che soddisfano i seguenti requisiti
i) hanno le origini sovrapposte allistante iniziale e gli assi paralleli ed equiversi ad ogni
istante;
ii) il sistema S si muove rispetto al sistema con velocità costante v diretta come la prima
coordinata spaziale;
iii) lo spazio è omogeneo e isotropo, e il tempo è omogeneo, almeno se giudicato da osservatori a
riposo in ;
iv) in la velocità della luce di sola andata ha lo stesso valore c in tutte le direzioni;
v) la velocità della luce di andata e ritorno è la stessa in tutte le direzioni e in tutti i sistemi
di riferimento inerziali; vi) gli orologi a riposo in S vanno più lentamente, rispetto a quelli che
sono a riposo in, secondo il solito fattore relativistico dipendente dalla velocità (cioè 1/ )
Selleri ha mostrato che le trasformazioni generali delle coordinate spazio-temporali da a S
contengono un parametro libero (il coefficiente della prima coordinata spaziale nella trasformazione
del tempo), termine convenzionale detto anche ‘fattore di sincronizzazione’, e che la teoria della
relatività speciale viene ottenuta per un particolare valore di . Diversi valori di corrispondono a
diverse teorie dello spazio e del tempo che sono in larga misura equivalenti, nel senso che numerosi
esperimenti sono spiegati ugualmente bene da tutte le teorie del set. In tutti i casi, tranne che
nella relatività speciale, tali valori implicano lesistenza di un sistema di riferimento
privilegiato.
Lequivalenza di queste teorie non è tuttavia completa: se si richiede che ci sia una continuità
fisica tra sistemi di riferimento inerziali e sistemi di riferimento dotati di una piccola
accelerazione (e questa, come sottolinea giustamente Selleri, è una richiesta del tutto legittima e
naturale, in quanto la nostra conoscenza empirica di sistemi di riferimento inerziali è ottenuta in
laboratori che hanno di fatto una piccola, ma non nulla, accelerazione, a causa per esempio della
rotazione della Terra), si rompe lequivalenza tra le teorie dellinsieme e si dimostra che quella
più semplice, basata su =0, spiega le osservazioni meglio della relatività speciale. Solo la teoria
dello spazio e del tempo che corrisponde a =0 è insomma in grado di evitare la discontinuità
relativistica tra sistemi inerziali e sistemi accelerati.
La condizione =0 corrisponde alla simultaneità assoluta: due eventi che hanno luogo in diversi punti
e allo stesso istante per osservatori che si trovano a riposo in un sistema inerziale devono essere
giudicati simultanei anche da osservatori a riposo in un altro sistema inerziale S.
La teoria dello spazio e del tempo basata su =0 si presenta meglio della teoria della relatività
speciale anche su unaltra questione significativa: la possibilità che esistano segnali
superluminali. Ci sono diverse evidenze sperimentali che qualche volta la radiazione
elettromagnetica possa propagarsi con una velocità di gruppo maggiore del normale valore c: questi
segnali vengono di solito chiamati “segnali superluminali” o “tachioni”. Ebbene, in tutte le teorie
corrispondenti a (e, in particolare, la relatività speciale) lesistenza di segnali superluminali
genera dei paradossi causali, situazioni assurde nel senso che, almeno in linea di principio,
sarebbe possibile modificare attivamente il passato, anche in modo da negare la realtà del presente.
Invece, la teoria basata su =0 è in grado di superare questi paradossi causali e fornisce un quadro
soddisfacente per lesistenza di segnali superluminali. Nella teoria dello spazio e del tempo basata
sulla sincronizzazione assoluta, come mostrato da Selleri, nessuno scambio di segnali superluminali
può portare a un paradosso causale. La spiegazione dei fenomeni relativistici da parte della teoria
corrispondente a =0 riesce clamorosamente bene. Se si ammette che lo spazio in cui il movimento ha
luogo sia fisicamente attivo, rappresenti un sistema privilegiato distinguibile dagli altri e quindi
che il movimento assoluto generi effetti fisici sui corpi in moto, tutti i paradossi possono essere
eliminati (per esempio, esemplare è la soluzione del paradosso dei gemelli: il gemello che è partito
con lastronave invecchia più lentamente di quello che è rimasto sulla terra, perché la sua velocità
assoluta è maggiore). Siccome la teoria dello spazio e del tempo che corrisponde a =0 implica
lesistenza di un sistema di riferimento privilegiato, questi risultati recenti di Selleri ci
permettono in qualche modo di recuperare letere di Lorentz. I risultati ottenuti da Selleri ci
forniscono quindi altri importanti elementi per cui linterpretazione di Lorentz della fisica
relativistica può essere considerata più soddisfacente rispetto alla relatività speciale di
Einstein.
Altre considerazioni
In questo articolo, abbiamo mostrato che la teoria di Lorentz si presenta meglio della relatività
speciale di Einstein sotto diversi importanti aspetti (letere in connessione con il dualismo
oggettivo onda-corpuscolo, la continuità fisica tra sistemi inerziali e sistemi aventi una debole
accelerazione e i segnali superluminali). Sulla base delle considerazioni che sono state fatte, si
può anche arrivare allidea che la relatività speciale einsteniana sia una teoria inutile (o,
almeno, meno adeguata, rispetto alla teoria di Lorentz, a descrivere la fisica delle alte velocità).
Può allora sorgere, in modo del tutto naturale, la domanda se questa teoria proposta da Einstein non
possa essere dimostrata falsa e quindi venire archiviata.
La risposta è negativa se la dimostrazione si volesse fare in modo diretto, per la semplice ragione
che i due postulati di tale teoria (in particolare, il primo) sono talmente eterei ed inafferrabili
da rendere praticamente impossibile qualsiasi affermazione sul loro conto. In compenso, però – come
viene sottolineato chiaramente nellintroduzione del libro Einstein e il Talmud di Bruno Thüring –
una dimostrazione può forse essere raggiunta per reductio ad absurdum, ragionando nei termini
seguenti. La contrazione di Lorentz, vista come puro fatto empirico, ha un campo di applicabilità
molto specifico e perfettamente delimitato, fuori del quale non è più valida; questo campo è la
misurazione, per mezzo di segnali elettromagnetici, di parametri geometrici e cinematici di corpi
materiali in movimento relativo.
La relatività speciale di Einstein invece ha pretese universalistiche, per cui la stessa contrazione
di Lorentz, vista adesso non come puro fatto empirico ma come conseguenza dei due postulati su cui
essa si basa, dovrebbe acquistare applicabilità anche in campi al di fuori di quello specifico in
cui essa fu scoperta. Ora è un fatto che, quando si operi il tentativo di applicare la contrazione
di Lorentz a quei campi che empiricamente non le competono (in modo particolare la statica, ma pure
la termodinamica), ne dovrebbero risultare improbabili e fantasmatici effetti che, neanche a dirlo,
non sono mai stati osservati .
Tanto per fare un esempio: si consideri una bilancia in equilibrio rispetto ad un osservatore a
riposo. Quando losservatore dovesse incominciare a muoversi rispetto alla bilancia, egli dovrebbe
osservare che i suoi bracci incominciano a ruotare attorno al fulcro. Ne segue che la relatività
speciale di Einstein (non la contrazione di Lorentz), sia pure per reductio ad absurdum, può essere
anche “sperimentalmente” dimostrata falsa.
Nonostante le diverse importanti questioni su cui la teoria di Lorentz sembra preferibile alla
relatività speciale di Einstein, va tuttavia ribadito che la relatività speciale continua a essere
lo schema teorico di base della fisica delle alte velocità. Invece, linterpretazione di Lorentz
viene spesso emarginata e messa da parte per “ragioni” che sono difficili da comprendere.
SpaceLife Institute – Davide Fiscaletti ©
Bibliografia:
Bergia (1998). S. Bergia, Einstein: quanti e relatività, una svolta nella fisica teorica, I Grandi
della scienza, Le Scienze, Milano, dicembre 1998. Kostro (2001). L. Kostro, Einstein e letere,
edizioni Dedalo, Bari, 2001. Selleri (1990). F. Selleri, Space-time transformations in Ether
Theories, “Z. Naturforsch”, 46A, 1990. Selleri (1995). F. Selleri, Inertial Systems and the
Transformations of Space and Time, “Physics Essays”, 8, 1995. Selleri (1996). F. Selleri, “Found.
Phys.”, 26, 641, 1996. Selleri (2000). F. Selleri, Space and Time should be preferred to Spacetime
1 and 2, International Workshop PHYSICS FOR THE 21st CENTURY, 5-9 June 2000, natural Philosophy
Association (Boston) and University of Connecticut. Selleri (2002). F. Selleri, Più veloce della
luce?, “Il Nuovo Saggiatore”, settembre 2002. Selleri (2003). F. Selleri, Lezioni di relatività. Da
Einstein alletere di Lorentz, Progedit, Bari, 2003. Thüring (1997). B. Thüring, Einstein e il
Talmud, edizioni di AR, 1997. Toscano (2004). F. Toscano, Il genio e il gentiluomo, Sironi, Milano,
2004.
Scienza e Conoscenza n. 67 – Gennaio/Marzo 2018 >> bit.ly/2FFrLu7
Nuove scienze, Medicina Integrata
www.macrolibrarsi.it/libri/__scienza-e-conoscenza-n-67-gennaio-marzo-2018.php?pn=1567
<www.macrolibrarsi.it/libri/__scienza-e-conoscenza-n-67-gennaio-marzo-2018.php?pn=1567>
Lascia un commento